TRPV1 Gene Required for Thermosensory Transduction and Anticipatory Secretion from Vasopressin Neurons during Hyperthermia

نویسندگان

  • Reza Sharif-Naeini
  • Sorana Ciura
  • Charles W. Bourque
چکیده

Increases in core body temperature promote thermoregulatory cooling by stimulating sweat production and preemptive renal water reabsorption through the release of vasopressin (VP, antidiuretic hormone). The mechanism by which the hypothalamus orchestrates this anticipatory VP release during hyperthermia is unknown but has been linked to a central thermosensory mechanism. Here, we report that thermal stimuli spanning core body temperatures activate a calcium-permeable, ruthenium red- and SB366791-sensitive nonselective cation conductance in hypothalamic VP neurons. This response is associated with a depolarizing receptor potential and an increase in action potential firing rate, indicating that these neurons are intrinsically thermosensitive. The thermosensitivity of VP neurons isolated from trpv1 knockout (Trpv1(-/-)) mice was significantly lower than that of wild-type counterparts. Moreover, Trpv1(-/-) mice showed an impaired VP response to hyperthermia in vivo. Channels encoded by the trpv1 gene thus confer thermosensitivity in central VP neurons and contribute to the thermal control of VP release in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypernatremia-induced vasopressin secretion is not altered in TRPV1-/- rats.

Changes in osmolality or extracellular NaCl concentrations are detected by specialized neurons in the hypothalamus to increase vasopressin (VP) and stimulate thirst. Recent in vitro evidence suggests this process is mediated by an NH2-terminal variant of the transient receptor potential vanilloid type 1 (TRPV1) channel expressed by osmosensitive neurons of the lamina terminalis and vasopressine...

متن کامل

Ecstasy (MDMA) and its effects on kidneys and their treatment: a review

Ecstasy (MDMA; 3,4-methylenedioxymethylamphetamine) is an illicit drug that has been increasingly abused by young people. Its effects include euphoria, enhanced sociability and heightened mental awareness. These come about via the increase of serotonin in both the central nervous system and the sympathetic nervous system. Despite the drug’s prevalent abuse, serious or adverse effects are rare. ...

متن کامل

The inhibitory effect of anandamide on oxytocin and vasopressin secretion from neurohypophysis is mediated by nitric oxide.

The neurohypophyseal hormones oxytocin (OT) and vasopressin (VP) are involved in behavioral, autonomic and neuroendocrine functions. Both peptides are synthesized in magnocellular neurons of paraventricular and supraoptic nuclei at hypothalamic level whose axons terminate in the neurohypophysis (NH), from where OT and VP are released into the systemic circulation. NH contains abundant nitric ox...

متن کامل

Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia.

Neurons of the organum vasculosum of the lamina terminalis (OVLT) are necessary for thirst and vasopressin secretion during hypersmolality in rodents. Recent evidence suggests the osmosensitivity of these neurons is mediated by a gene product encoding the transient receptor potential vanilloid-1 (TRPV1) channel. The purpose of the present study was to determine whether mice lacking the TRPV1 ch...

متن کامل

Dynamic and permissive roles of TRPV1 and TRPV4 channels for thermosensation in mouse supraoptic magnocellular neurosecretory neurons.

The transient receptor potential vanilloid 1 and 4 genes (trpv1, trpv4) encode temperature-sensitive cation channels hypothesized to mediate thermoresponses in mammalian cells. Although such channels were shown to participate in the peripheral detection of ambient temperature, the specific roles of these channels in central thermosensory neurons remain unclear. Here we report that the membrane ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2008